Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26588, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434286

RESUMO

Introduction: Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder. Although diverse biomarkers have been established for Parkinson's disease (PD), no widely accepted markers have been identified in MSA. Pyruvate and lactate are the end-product of glycolysis and crucial for brain metabolism. However, their correlation with MSA remains unclear. Moreover, it is elusive how lifestyles modify these metabolites. Methods: To investigate the correlation and diagnostic value of plasma pyruvate and lactate levels in MSA and PD. Moreover, we explored how lifestyle-related metabolites interact with these metabolites in determining the disease risk. We assayed the 3 metabolites in pyruvate/lactate and 6 in the tea/coffee metabolic pathways by targeted mass spectrometry and evaluate their interactions and performance in diagnosis and differentiation between MSA and PD. Results: We found that 7 metabolites were significantly different between MSA, PD and healthy controls (HCs). Particularly, pyruvate was increased in PD while significantly decreased in MSA patients. Moreover, the tea/coffee metabolites were negatively associated with the pyruvate level in HCs, but not in MSA and PD patients. Using machine-learning models, we showed that the combination of pyruvate and tea/coffee metabolites diagnosed MSA (AUC = 0.878) and PD (AUC = 0.833) with good performance. Additionally, pyruvate had good performance in distinguishing MSA from PD (AUC = 0.860), and the differentiation increased (AUC = 0.922) when combined with theanine and 1,3-dimethyluric acid. Conclusions: This study demonstrates that pyruvate correlates reversely with MSA and PD, and may play distinct roles in their pathogenesis, which can be modified by lifestyle-related tea/coffee metabolites.

2.
Aging (Albany NY) ; 16(1): 299-321, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180752

RESUMO

Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-transcriptional modifications, among which METTL3 is the most common methylation transferase. During the study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/reperfusion (I/R) injury.


Assuntos
Berberina , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Neuroproteção , Astrócitos/metabolismo , MicroRNAs/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Apoptose/genética , Glucose/metabolismo
3.
Commun Biol ; 6(1): 1201, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007539

RESUMO

Parkinson's disease (PD) is characterized by α-synuclein aggregation in dopaminergic (DA) neurons, which are sensitive to oxidative stress. Mitochondria aconitase 2 (ACO2) is an essential enzyme in the tricarboxylic acid cycle that orchestrates mitochondrial and autophagic functions to energy metabolism. Though widely linked to diseases, its relation to PD has not been fully clarified. Here we revealed that the peripheral ACO2 activity was significantly decreased in PD patients and associated with their onset age and disease durations. The knock-in mouse and Drosophila models with the A252T variant displayed aggravated motor deficits and DA neuron degeneration after 6-OHDA and rotenone-induction, and the ACO2 knockdown or blockade cells showed features of mitochondrial and autophagic dysfunction. Moreover, the transcription of autophagy-related genes LC3 and Atg5 was significantly downregulated via inhibited histone acetylation at the H3K9 and H4K5 sites. These data provided multi-dimensional evidences supporting the essential roles of ACO2, and as a potential early biomarker to be used in clinical trials for assessing the effects of antioxidants in PD. Moreover, ameliorating energy metabolism by targeting ACO2 could be considered as a potential therapeutic strategy for PD and other neurodegenerative disorders.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/metabolismo , Histonas/metabolismo , Acetilação , Mitocôndrias/metabolismo , Autofagia , Aconitato Hidratase/genética
4.
Brain Sci ; 13(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37626492

RESUMO

Vascular dementia is a type of dementia from brain damage caused by cerebrovascular lesions and vascular risk factors. Prevotella histicola is a species of Prevotella, belonging to the category of obligate anaerobe. The purpose of our work was to study the protection of Prevotella histicola on cognitive function in rats subjected to vascular dementia (VaD) and investigate underlying molecular mechanisms. The rats were randomly divided into three groups: control group, 2VO group and 2VO + Prevotella histicola group. The VaD rats (the 2VO group and 2VO + Prevotella histicola group) were generated by bilateral common carotid artery occlusion (2VO). Rats in the 2VO+ Prevotella histicola group were administered with Prevotella histicola twice daily. In comparison with the rats in the 2VO group, rats in the 2VO + Prevotella histicola group presented an enhanced cognitive ability, increased synapse-associated protein expression, a downregulation of proinflammatory factors and an upregulation of neurotrophic factors. The relevant mechanism of the protective effect of Prevotella histicola may be associated with the inhibition of glial cell-associated inflammation by regulating phosphorylation of CaMKII. In conclusion, Prevotella histicola attenuates neurological impairments via regulating synapse-associated protein expression and the liberation of inflammatory elements in vascular dementia rats. The findings above might benefit the development of Prevotella histicola transplantation as a promising treatment of VaD.

5.
Nutrients ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201839

RESUMO

Ischemic stroke (IS) is a vascular disease group concomitant with high morbidity and mortality. Berberine is a bioactive substance and it has been known to improve stroke, but its mechanism is yet to be proven. Mice were fed with BBR for 14 days. Then, the mice were made into MCAO/R models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were detected. We tested the changes in intestinal flora in model mice after BBR administration using 16SrRNA sequencing. Chromatography-mass spectrometry was used to detect butyrate chemically. Tissue immunofluorescence was used to detect the changes in the microglia and astroglia in the mice brains. Our findings suggest that berberine improves stroke outcomes by modulating the gut microbiota. Specifically, after MCAO/R mice were given berberine, the beneficial bacteria producing butyric acid increased significantly, and the mice also had significantly higher levels of butyric acid. The administration of butyric acid and an inhibitor of butyric acid synthesis, heptanoyl-CoA, showed that butyric acid improved the stroke outcomes in the model mice. In addition, butyric acid could inhibit the activation of the microglia and astrocytes in the brains of model mice, thereby inhibiting the generation of pro-inflammatory factors IL-6, IL-1ß and TNF-α as well as improving stroke outcomes. Our results suggest that berberine may improve stroke outcomes by modulating the gut flora to increase the abundance of butyric acid. These findings elucidate the mechanisms by which berberine improves stroke outcomes and provide some basis for clinical treatment.


Assuntos
Berberina , Isquemia Encefálica , Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Camundongos , Berberina/farmacologia , Ácido Butírico/farmacologia , Isquemia Encefálica/tratamento farmacológico
6.
Front Neurol ; 13: 903721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847229

RESUMO

Objectives: To develop and validate a predictive nomogram for idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) in a community population in Beijing, China. Methods: Based on the validated RBD questionnaire-Hong Kong (RBDQ-HK), we identified 78 individuals with possible RBD (pRBD) in 1,030 community residents from two communities in Beijing. The least absolute shrinkage and selection operator (LASSO) regression was applied to identify candidate features and develop the nomogram. Internal validation was performed using bootstrap resampling. The discrimination of the nomogram was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the predictive accuracy was assessed via a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: From 31 potential predictors, 7 variables were identified as the independent predictive factors and assembled into the nomogram: family history of Parkinson's disease (PD) or dementia [odds ratio (OR), 4.59; 95% confidence interval (CI), 1.35-14.45; p = 0.011], smoking (OR, 3.24; 95% CI, 1.84-5.81; p < 0.001), physical activity (≥4 times/week) (OR, 0.23; 95% CI, 0.12-0.42; p < 0.001), exposure to pesticides (OR, 3.73; 95%CI, 2.08-6.65; p < 0.001), constipation (OR, 6.25; 95% CI, 3.58-11.07; p < 0.001), depression (OR, 3.66; 95% CI, 1.96-6.75; p < 0.001), and daytime somnolence (OR, 3.28; 95% CI, 1.65-6.38; p = 0.001). The nomogram displayed good discrimination, with original AUC of 0.885 (95% CI, 0.845-0.925), while the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.876. The calibration curve and DCA indicated the high accuracy and clinical usefulness of the nomogram. Conclusions: This study proposed an effective nomogram with potential application in the individualized prediction for pRBD.

7.
Front Aging Neurosci ; 14: 899892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669464

RESUMO

Detection of oligomeric α-synuclein (o-α-Syn) in red blood cells (RBCs) has been shown to be promising in diagnosing Parkinson's disease and other synucleinopathies. However, if RBC o-α-Syn derive from plasma and can reflect changes of plasma o-α-Syn remains unclear. In this study, synthetic o-α-Syn was intravenously injected into mice and dynamic changes in plasma and RBC o-α-Syn levels were investigated. Injection of o-α-Syn induced a temporary increase in plasma o-α-Syn levels, which then decreased to a relatively stable level. In contrast, levels of RBC o-α-Syn increased steadily and significantly. Besides, α-Syn-immunoreactive particles were observed in RBCs of the injected mice, suggesting that RBCs can actively take up and enrich o-α-Syn from plasma. Moreover, incubation of o-α-Syn with isolated RBCs at concentrations lower than those of endogenous o-α-Syn led to a time- and concentration-dependent o-α-Syn elevation in RBCs, which was impaired by lowering the temperature and treatment with proteinase K. The o-α-Syn accumulation in RBCs was also inhibited by specific inhibitors of receptor-dependent endocytosis, including dynamin- and clathrin-dependent endocytosis. The above results suggest that plasma o-α-Syn can be actively transported into RBCs via receptor-dependent endocytic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA